A concept for parametric surface fitting which avoids the parametrization problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A concept for parametric surface fitting which avoids the parametrization problem

An active contour model to surface approximation is presented. It adapts to the model shape to be approximated with help of local quadratic approximants of the squared distance function. The approach completely avoids the parametrization problem. The concept is open for inclusion of smoothing operators and shape constraints.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Surface fitting based on a feature sensitive parametrization

Most approaches to least squares fitting of a B-spline surface to measurement data require a parametrization of the data point set and the choice of suitable knot vectors. We propose to use uniform knots in connection with a feature sensitive parametrization. This parametrization allocates more parameter space to highly curved feature regions and thus automatically provides more control points ...

متن کامل

A trust region algorithm for parametric curve and surface fitting

Let a family of curves or surfaces be given in parametric form via the model equation x =J‘(s, /I), where x E R”, p E KY’, and s E S c [wd. d < n. We present an algorithm for solving the problem: Find a shape cec’tor p* such that the manlfold M* = (f(s, /I*): s E S) is a best fir to scattered data :z, j ,‘= , c R” in the Sense that, jbr some is* )y=, , the sum of the squared least distances )-y...

متن کامل

The problem of low variance voxels in statistical parametric mapping; a new hat avoids a ‘haircut’

Statistical parametric mapping (SPM) locates significant clusters based on a ratio of signal to noise (a 'contrast' of the parameters divided by its standard error) meaning that very low noise regions, for example outside the brain, can attain artefactually high statistical values. Similarly, the commonly applied preprocessing step of Gaussian spatial smoothing can shift the peak statistical si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Aided Geometric Design

سال: 2003

ISSN: 0167-8396

DOI: 10.1016/s0167-8396(03)00078-5